

PROYECTO DE GRADO

USO DE LAS HERRAMIENTAS SIX SIGMA EN LA PROPUESTA DE MEJORA DEL PROCESO DE ELABORACIÓN DE ENVASES DE POLIETILENO EN LA EMPRESA IFA S.A.

GARY YALAL EID PEÑA

Proyecto de grado para optar al grado de licenciatura En Ingeniería Industrial

> SANTA CRUZ DE LA SIERRA- BOLIVIA 2020

INGENIERIA INDUSTRIAL PROYECTO DE GRADO

USO DE LAS HERRAMIENTAS SIX SIGMA EN LA PROPUESTA DE MEJORA DEL PROCESO DE ELABORACIÓN DE ENVASES DE POLIETILENO EN LA EMPRESA IFA S.A

GARY YALAL EID PEÑA

Proyecto de grado para optar al grado de licenciatura En Ingeniería Industrial

> Santa Cruz de la Sierra- Bolivia 2020

ABSTRACT

TITULO

: "USO DE LAS HERRAMIENTAS SIX SIGMA EN LA PROPUESTA DE MEJORA DEL PROCESO DE ELABORACIÓN DE ENVASES DE POLIETILENO EN LA

EMPRESA IFA S.A."

AUTOR : Gary Yalal Eid Peña

PROBLEMÁTICA

La cantidad elevada de devoluciones a raíz de los defectos de fábrica de los envases, debido a la obsolescencia y falta de controles de calidad en el proceso de fabricación de envases de polietileno.

OBJETIVO GENERAL

Realizar una propuesta de control en base a las herramientas de la calidad 6 σ para mejorar el proceso de fabricación de envases de polietileno en la empresa IFA S.A.

CONTENIDO

Garantizar el correcto funcionamiento de la máquina de soplado de polietileno realizando un estudio de la actualidad en la que se encuentra esta máquina debido a su importancia dentro del proceso de manufactura de los medicamentos.

Donde vamos a poder apreciar la estructura interna y la forma en cómo se maneja las cosas dentro de la empresa laboratorios IFA S.A., así como también las distintas variedades del producto que se guardan dentro de estos envases y sus distintas medidas.

También encontraremos los componentes internos de la maquina de soplado y como esta interviene en cada parte del proceso, los cuales han sido medidos de manera manual para si correcta interpretación y posterior toma de decisiones.

Se encuentra mediante análisis estadísticos las proyecciones de la producción para los siguientes años en los cuales se puede observar que la maquinaria ya presenta desperfectos y genera costos muy aparte de los planificados

CARRERA : INGENIERIA INDUSTRIAL

PROFESOR GUIA : ING. NORBERTO JUSTINIANO GALLARDO

DESCRIPTORES O TEMAS : GESTION DE LA CALIDAD

PERIODO DE INVESTIGACION : AGOSTO DE 2018 A FEBRERO DE 2019

E-MAIL DEL O LOS AUTORES : garyep.planta.ifa@gmail.com

DEDICATORIA

Primeramente, dar gracias a dios por haber derramado bendiciones sobre mi persona por haberme dado sabiduría, paciencia y perseverancia para la conclusión de mi presente trabajó de investigación.

Dar gracias a mis padres Claudia Patricia Peña Zurita y Yalal Gary Eid Antelo por haberme brindado una gran enseñanza de vida la cual me permitió convertirme en la persona que soy hoy en día, a mi hermano Nicolas Eid Peña por haberme acompañado en las noches de desvelo por el apoyo incondicional en esa etapa de mayor tensión.

Agradecer a mi abuela Ana Maria Zurita Portales de Peña por siempre apoyarme en cada una de las decisiones que he tomado de una manera incondicional por haberme brindado esa tranquilidad que solo una abuela puede darte y a mi abuela por parte de padre Juana Antelo Bascope de Eid por haber estado en cada uno de los años en los que me he formado como persona y como profesional con ese cariño y apoyo tan grande que siempre la ha caracterizado y a toda mi familia por haberme apoyado en mi formación profesional.

Gracias al Ing. Norberto Justiniano Gallardo por haberme transmitido todo su conocimiento y experiencia para poder culminar mi proyecto de grado.

Dedicar mi trabajo de grado a la persona que siempre me cuido desde muy pequeño me enseño el valor del trabajo que no todo en la vida es el dinero si no las experiencias que uno vive dedicarle esto a mi abuelo Darwin Peña Pedraza que aunque el ya no se encuentra con nosotros su recuerdo fue el motor que me impulso a seguir a delante en la vida y finalmente poder decirle "PAPI LO LOGRE".

INDICE DE CONTENIDO

CAPITULO I

INTRODUCCIÓN

1.1.	INTRODUCCION	1
1.2.	PLANTEAMIENTO DEL PROBLEMA	2
1.2.1.	Problema	3
1.2.2.	Árbol del problema	4
1.2.3.	Situación deseada	5
1.2.4.	Preguntas de investigación	6
1.3.	JUSTIFICACIÓN	6
1.3.1.	Justificación Empresarial	6
1.3.2.	Justificación Económica	7
1.3.3.	Justificación Técnica	7
1.4.	OBJETIVOS	7
1.4.1.	Objetivo General	7
1.4.2.	Objetivos Específicos	7
1.5.	ALCANCE	8
1.5.1.	Alcance Espacial	8
1.5.2.	Alcance Temporal	8
1.5.3.	Alcance Temático	8
CAPITU	LO II	
MARCO	TEORICO	
2.1.	MARCO CONCEPTUAL	9
2.1.1.	Introducción	9

2.1.2.	Tipos de plástico según el Moldeo	. 9
2.1.2.1.	Propiedades y características	. 9
2.1.3.	Clasificación de los plásticos	11
2.1.3.1.	Según el monómero base	11
2.1.3.2.	Naturales	11
2.1.3.3.	Sintéticos	11
2.1.4.	Según su comportamiento frente al calor	11
2.1.4.1.	Termoplásticos	11
2.1.4.2.	Termoestables	12
2.1.4.3.	Según la reacción de síntesis	13
2.1.4.4.	Polímeros de adición	13
2.1.4.5.	Polímeros de condensación	13
2.1.4.6.	Polímeros formados por etapas	13
2.1.5.	Según su estructura molecular	14
2.1.5.1.	Amorfos	14
2.1.5.2.	Semi-cristalinos	14
2.1.5.3.	Cristalizables	14
2.1.5.4.	Comodities	14
2.1.5.5.	De ingeniería	15
2.1.5.6.	Elastómeros o cauchos	15
2.1.6.	Codificación de los plásticos	15
2.1.7.	Polietileno	16
2.1.8.	Estructura Química y síntesis	16
2.1.9.	Historia	17

2.1.10.	Propiedades	19
2.1.10.1.	Propiedades físicas	19
2.1.10.2.	Propiedades químicas	19
2.2.	CLASIFICACIÓN	19
2.3.	CONCEPTOS BÁSICOS DE CALIDAD	20
2.3.1.	Función de control de la calidad	23
2.4.	CONTROL DE CALIDAD DE PRODUCTOS	25
2.4.1.	Variabilidad	26
2.4.2.	Causas de la variabilidad	27
2.4.2.1.	Diagrama de Pareto	28
2.4.2.2.	Histograma y polígono de frecuencias	29
2.4.2.3.	Diagrama Causa Efecto	30
2.4.2.4.	Diagrama de dispersión	30
2.4.2.5.	Gráficas de control	31
2.4.2.6.	Hojas de verificación - diagrama de flujo	32
CAPITUI	LO III	
CARAC	TERIZACIÓN DE LA EMPRESA	
3.1.	ANTECEDENTES DE LA EMPRESA	37
3.1.1.	Misión	39
3.1.2.	Visión	39
3.2.	POLÍTICA	39
3.3.	OBJETIVOS	39
3.4.	VALORES	40
3.4.1.	Capital Humano	40

3.4.2.	Tecnología	40
3.4.3.	Seguridad e Higiene	40
3.4.4.	Responsabilidad Social	40
3.5.	CALIDAD DEL PERSONAL	41
3.5.1.	Calidad en la producción	41
3.5.2.	Control de calidad	41
3.6.	PRODUCTOS QUE SE PRODUCEN	44
3.7.	DESARROLLO GALÉNICO	46
3.8.	APOYO	46
3.9.	LOGÍSTICA	47
3.10.	PROCESO DE SOPLADO	47
3.10.1.	Componentes	47
3.10.1.1.	Matriz de soplado	48
3.10.1.2.	Cilindro neumático	48
3.10.1.3.	Resistencia	49
3.10.1.4.	Extrusora	50
3.10.1.5.	Boquillas de soplado	50
3.10.1.6.	Chiller	51
3.10.1.7.	Cinta transportadora	52
3.10.1.8.	Válvulas neumáticas	52
3.11.	DESCRIPCIÓN DEL PROCESO	53
3.11.1.	Soplado	53
3.11.2.	Descripción del proceso de extrusión	54
3.12.	DATOS HISTÓRICOS DE SOPLADO DE ENVASES	54

3.12.1.	Análisis de datos históricos y proyección futura	. 56
CAPITU	LO IV	
DIAGNO	OSTICO DEL PROYECTO	
4.1.	DIAGNOSTICO DEL PROCESO DE SOPLADO	. 58
4.1.1.	Metodología 5W 1 H – No Conformidad Contaminado	. 58
4.1.2.	Diagrama de Pareto	61
4.2.	ESTUDIO DE TIEMPOS Y MOVIMIENTOS	62
4.2.1.	Recopilacion de datos	63
4.2.1.1.	Aplicación de la técnica de cronometraje	63
4.3.	ACTIVIDADES	64
4.3.1.	Colocar la matriz	64
4.3.1.1.	Graficas de control del proceso de colocado de la matriz	66
4.3.2.	Ajuste de la matriz de soplado	67
4.3.3.	Graduación de ancho	69
4.3.4.	Toma de materiales	. 71
4.3.5.	Cuantificación	73
4.3.6.	Mezclado	75
4.3.7.	Mezclado en bobinas	. 77
4.3.8.	Transporte hacia la tolva	. 79
4.3.9.	Maquina en operación y extrusión	82
4.3.10.	Verificación	82
4.3.11.	Desajuste de la matriz de soplado	84
4.3.12.	Retiro de la matriz	87
4.3.13.	Transporte de la matriz de soplado	89

4.4.	CAPACIDAD INSTALADA	91
4.4.1.	Capacidad estimada	91
4.4.2.	Mano de obra	91
4.4.3.	Capacidad del equipo	91
4.5.	REPROCESADOS	94
4.6.	CONCLUSIONES DEL DIAGNOSTICO	96
4.7.	PROCESOS DE APOYO	97
4.8.	COMPROMISO DE CALIDAD	97
4.9.	POLÍTICA DE CALIDAD	99
CAPITU	LO V	
PROPU	ESTA	
5.1.	MANTENIMIENTO DEL EQUIPO	101
5.1.1.	Requerimiento de matriz de soplado	101
5.1.2.	Requerimiento de servicio de calibración	102
5.1.3.	Requerimiento de resistencia	102
5.1.4.	Mantenimientos correctivos	102
5.2.	MAQUINA NUEVA	103
5.2.1.	Maquinaria	103
5.3.	COSTOS	104
5.3.1.	Costos de mano de obra directa	104
5.3.2.	Costos de energía eléctrica	104
5.3.3.	Costos de seguro	104
5.3.4.	Costos de mantenimiento	105
5.4.	COSTO COMPARATIVO DE MANTENIMIENTO Y	EQUIPO NUEV.105

5.5.	PROPUESTA DE IMPLEMENTACIÓN DE HERRAMIENTAS DE		
	CONTROL DE CALIDAD	Э6	
5.5.1.	Hoja de verificación10)7	
5.5.2.	Gráficos de control de temperaturas)7	
5.5.3.	Gráficos de control de reprocesados10	38	
CAPITULO VI			
COSTO-	-BENEFICIO		
6.1.	PLANIFICACIÓN1	10	
6.2.	MANTENIMIENTO	10	
6.3.	DEVOLUCIONES	10	
6.4.	COSTO POR BOTELLAS DEFECTUOSAS1	11	
6.5.	ANÁLISIS COSTO-BENEFICIO	11	
6.5.1.	Análisis de costos1	11	
6.5.2.	Análisis de beneficios1	12	
BIBLIOG	BIBLIOGRAFIA		

INDICE DE GRAFICO

GRAFICO N° III.1.	PORCENTAJE DE PRODUCCION DE ENVASES	55
GRAFICO N° III.2.	PROYECCION DE CONSUMO	57
GRAFICO N° IV.1.	DIAGRAMA DE PARETO	62
GRAFICO N° IV.2.	HISTOGRAMA Y POLÍGONO DE FRECUENCIAS EN TIEMPO EMPLEADO EN EL COLOCADO DE LA MATRIZ	
GRAFICO N° IV.3.	COLOCAR MATRIZ	67
GRAFICO N° IV.4.	HISTOGRAMA Y POLÍGONO DE FRECUENCIAS EN TIEMPO EMPLEADO EN AJUSTE DE BOBINA	
GRAFICO N° IV.5.	AJUSTE DE BOBINA	69
GRAFICO N° IV.6.	GRADUACION DE ANCHO	71
GRAFICO N°IV.7.	HISTOGRAMA Y POLÍGONO DE FRECUENCIAS I	
GRAFICO N° IV.8.	TOMA DE MATERIALES	73
GRAFICO N°IV.9.	HISTOGRAMA Y POLÍGONO DE FRECUENCIAS I	
GRAFICO N° IV.10.	CUANTIFICACIÓN	75
GRAFICO N° IV.11.	MEZCLADO	76
GRAFICO N° IV.12.	LÍMITES DE CONTROL DEL PROCES DE MEZCLADO	
GRAFICO N° IV.13.	HISTOGRAMA Y POLIGONO DE FRECUENCIAS I MEZCLADO EN BOBINAS	DE 78
GRAFICO N° IV.14.	LÍMITES DE CONTROL DEL PROCESO DE MEZCLADO DE BOBINAS	
GRAFICO N° IV.15	5. HISTOGRAMA Y POLIGONO DE FRECUENCIAS I TRANSPORTE DE MATERIALES A LA TOLVA	

GRAFICO N° IV.16.	TRANSPORTE HACIA LA TOLVA 81
GRAFICO N° IV.17.	HISTOGRAMA Y POLIGONO DE FRECUENCIAS DE VERIFICACIÓN
GRAFICO N° IV.18.	LÍMITES DE VERIFICACIÓN 84
GRAFICO N° IV.19.	HISTOGRAMA Y POLIGONO DE FRECUENCIAS DE DESAJUSTES DE LA MATRIZ DE SOPLADO
GRAFICO N° IV.20.	DESAJUSTE DE LA MATRIZ DE SOPLADO 86
GRAFICO N° IV.21.	LÍMITES DE RETIRO DE LA MATRIZ DE SOPLADO 87
GRAFICO N° IV.22.	HISTOGRAMA Y POLIGONO DE FRECUENCIAS DE RETIRO DE MATRIZ DE SOPLADO EN CAMBIOS DE FORMATO
GRAFICO N° IV.23.	LÍMITES DE RETIRO DE LA MATRIZ DE SOPLADO 88
GRAFICO N° IV.24.	TRANSPORTE DE LA MATRIZ DE SOPLADO 90
GRAFICO N°IV.25.	LÍMITES DE TRANSPORTE DE LA MATRIZ DE SOPLADO
GRAFICO N° IV.26.	CAPACIDAD DE LA MAQUINA DE SOPLADO PROYECTADA
GRAFICO N° IV.27.	TENDENCIA DE CRECIMIENTO
GRAFICO N° IV.28.	REPROCESADOS
GRAFICO Nº V 1	CONTROL DE TEMPERATURA 108

INDICE DE CUADRO

CUADRO N° II.1.	CODIFICACIÓN INTERNACIONAL PARA LOS DISTINTOS PLÁSTICOS
CUADRO N° III.1.	DATOS HISTORICOS5
CUADRO N° III.2.	PROYECCION ESTIMADA GESTION 2019-2022 56
CUADRO N° IV.1.	PAROS DE PRODUCCIÓN62
CUADRON° IV.2.	PROCESO DE EXTRUSIÓN DE ENVASES DE POLIETILENO
CUADRO N° IV.3.	LIMITES DEL COLOCADO DE LA MATRIZ 65
CUADRO N° IV.4.	LIMITES DE AJUSTE DE BOBINA 68
CUADRO N° IV.5.	AJUSTE DE ANCHO70
CUADRO N° IV.6.	HISTOGRAMA Y POLÍGONO DE FRECUENCIAS DE TIEMPOS EN GRADUACIÓN DE ANCHO70
CUADRO N° IV.7.	TOMA DE MATERIALES72
CUADRO N° IV.8.	LÍMITES DE LA CUANTIFICACIÓN74
CUADRO N° IV.9.	MEZCLADO
CUADRO N° IV.10.	MEZCLADO EN BOBINAS78
CUADRO N° IV.11.	TRANSPORTE HACIA LA TOLVA 80
CUADRO N° IV.12.	MAQUINA EN OPERACIÓN Y EXTRUSIÓN 82
CUADRO N° IV.13.	LÍMITES DE VERIFICACIÓN83
CUADRO N° IV.14.	LÍMITES DE DESAJUSTE DE LA MATRIZ DE SOPLADO85
CUADRO N° IV.15.	LÍMITES DE TRANSPORTE DE LA MATRIZ DE SOPLADO89
CUADRO N° IV.16.	CAPACIDAD DE LA MAQUINA DE SOPLADO 92

CUADRO N° IV.17.	DIAS DE PRODUCCIÓN
CUADRO N° IV.18.	PROCESO DE REPROCESADOS
CUADRO N° V.1.	MATRIZ DE SOPLADO101
CUADRO N° V.2.	CALIBRACIÓN102
CUADRO N° V.3.	RESISTENCIA
CUADRO N° V.4.	PIEZAS CAMBIADAS 103
CUADRO N° V.5.	MAQUINARIAS103
CUADRO N° V.6.	MANO DE OBRA INDIRECTA 104
CUADRO N° V.7.	PROYECCION DE COSTO DE ENERGIA ELECTRICA
CUADRO N° V.8.	COSTO DEL SEGURO
CUADRO N° V.9.	COSTOS DE MANTENIMIENTO 105
CUADRO N° V.10.	COMPARACION
CUADRO N° VI.1.	DEVOLUCIONES110
CUADRO N° VI.2.	COSTO DE ENVASES DEFECTUOSOS EN BS Y EN SUS
CUADRO N° VI.3.	COSTOS DE EQUIPO DE SOPLADO111
CUADRO N° VI.4.	COSTOS ASOCIADOS A BOTELLAS DEFECTUOSAS
CUADRO N° VI.5.	COSTOS ASOCIADOS A BOTELLAS DEFECTUOSAS 30 % Y 5%

INDICE DE DIAGRAMA

DIAGRAMA N° I.1.	DIAGRAMA CAUSA - EFECTO5
DIAGRAMA N° I.2.	SITUACION DESEADA
DIAGRAMA N° II.1.	MAPA DE PROCESOS21
DIAGRAMA N° II.2.	MALA CALIDAD Y COMPETIVIDAD
DIAGRAMA N° II.3.	CICLO DE CONTROL
DIAGRAMA N° II.4.	INSPECCION DE ACEPTACION POR MUESTREO 26
DIAGRAMA N°II.5.	FACTORES PRINCIPALES QUE INCIDEN EN LA VARIABILIDAD DE LOS PROCESOS
DIAGRAMA N° II.6.	HISTOGRAMA Y POLÍGONO DE FRECUENCIAS DE DISTRIBUCIÓN
DIAGRAMA N° II.7.	CAUSA EFECTO EN ROTURA DE ENVASES 30
DIAGRAMA N° II.8.	DATOS HISTÓRICOS DE FRASCOS SOPLADOS EN LA EMPRESA IFA S.A
DIAGRAMA N° IV.1.	PROCESO PRODUCTIVO MATERIAL CONTAMINADO. 60
DIAGRAMA N° IV.2.	PRODUCTO CONTAMINADO61

INDICE DE IMAGEN

IMAGEN N° III.1.	MATRIZ DE SOPLADO DE ENVASE DE POLIETILENO	. 48
IMAGEN N° III.2.	CILINDRO NEUMÁTICO	. 49
IMAGEN N° III.3.	RESISTENCIAS	. 49
IMAGEN N° III.4.	EXTRUSORA DE POLIETILENO	. 50
IMAGEN N° III.5.	BOQUILLAS DE SOPLADO	. 51
IMAGEN N° III.6.	CHILLER	. 51
IMAGEN N° III.7.	CINTA TRANSPORTADORA	. 52
IMAGEN N° III.8.	VALVULA NEUMATICA	. 53
IMAGEN N° III.9.	PROCESO DE EXTRUSIÓN	. 54
INDICE DE TABLA		
TABLA N° I.1.	DEVOLUCIONES EXPRESADO EN BOLIVIANOS	3

CAPITULO I INTRODUCCIÓN